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ABSTRACT

The paper deals with a simultaneous effect of a row of regularly distributed moving loads and a vertical seismic
ground excitation on a single-span bridge. The simple mathematical model is used to allow direct comparison of
analytical and numerical results. Advantages and drawbacks of both methods are discussed. Various levels of
simplification of description the loads are supposed. The discussed methodology is illustrated on an example of
an interaction of the real concrete bridge, the high-speed train TALGO AV2 and an artificial earthquake data.
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Introduction

The recent development and expansion of the high-speed railway services puts additional
demands on the railway tracks, their design, construction and overall safety. This holds
particularly true for bridges. The problem of the dynamic action of moving loads on structures
as well as the specific effect of the high-speed rail traffic on bridges is reported regularly in
the scientific literature and design codes, e.g. [Fryba (1996)] or [Fryba and Fischer (2003)],
however, the combined effect of train and earthquake attracted attention only recently, see
[Yau and Fryba (2005)]. In their first and also in the subsequent works authors [Yau and
Fryba (2007)] or [Fryba and Yau (2009)] and finally [Fryba et al. (2014)] limit themselves on
the case of the vertical vibration of a beam subjected to a row of moving forces. The supports
of the beam are simultaneously supposed to provide vertical movements due to an earthquake.
This model is unrealistic under certain circumstances, as the authors admit, from the point of
view of both earthquake and bridge model. The effect of an earthquake is usually supposed to
be dominant in the horizontal direction; only several harmonic components of the earthquake
record are taken into account and the bridge is modelled as a simply supported Euler beam.
However, simplicity of the model allows to formulate the analytic solution, which is able to
provide a qualitative insight into the problem. Such an analytic solution can be favourably
used for validation of a numerical procedure, which can be subsequently easily extended for a
more general model.

It has to be mentioned that the analytical formulae, which were derived for action of moving
load on structures in, e.g., [Fryba (1996)] and which were extended for the combined problem
in the above cited works by Fryba and Yau, bring their own difficulties for numerical
enumeration: they involve partial sums of infinite trigonometric series, which can introduce
spurious oscillations, or hidden pairs of terms, which cancel themselves under certain
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Figure 1: Theoretical model of a beam, moving forces and support movements.

conditions and thus they are a potential source of numerical instability. Moreover, simplifying
assumptions like lack of damping, rough model of an earthquake process or a limited number
of eigenforms taken into account lower credibility of the formulae. Such obstacles introduce
additional arguments supporting the numerical approach.

There is a wide range of numerical techniques available to solve the fourth order parabolic
partial differential equations (PDEs). The traditional discretization methods comprise explicit
and implicit finite difference schemas or several variants of finite element methods. Another
popular option is the method of lines, which reformulates the PDE to the form convenient for
application of a standard ordinary differential equation (ODE) solver. In this paper, the
implicit difference schema is used, which was introduced for this particular problem in
[Fischer et al. (2014)]

Mathematical Model

The dynamic action of the combined load on a simply supported beam is described by the
fourth order PDE. The beam of span £ is subjected to a row of moving forces Fy,
n=1,2,3,...,N at the distances dy, see the Figure 1. The forces are moving from the left to the
right with a constant speed c. The supports of the beam perform the vertical movements o(t)
(left support) and A(t) (right support), respectively. The equation together with initial and
boundary conditions reads:

EIv?(x,t) + uv(x,t) + 2uy v(x,t) = Y-, F ,(6)8(x — d;) (1)
v(0,t) = a(t),v(¢,t) = B(t), v"(0,t) =0,v"(4,t)=0 2)
v(x,0) =v(x,0) =0 3)

where it has been denoted:

v(x,t) — vertical displacement of the beam at x and time t, respectively,

El — flexural rigidity of the beam (constant),

U — mass per unit length of the beam (constant),

y — circular frequency of the beam damping,

€;(t) = h(t — t;) — h(t — T;), where h(t) is the Heaviside unit step function,
6(x) — Dirac function,

ti =d;/c, T; = (£ + d;)/c — time when the i-th force enters or leaves the beam
d; — distance between the first and i-th force d; = 0,

o ', o — differentiation with respect to space or time, respectively.

The boundary conditions (2) characterize the “simply supported beam” with prescribed
movement of its both ends. The both soil displacement functions are usually assumed to be
equal a(t) = [(t) or shifted a(t) = f(t £ At) on both ends, however, the general choice
a(t) # B(t) is supposed here. The initial condition (3) assumes that the structure is initially
at rest.
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Figure 2: Response of the mid-span point of the concrete bridges due to (a-b) earthquake only,
(c-d) earthquake and train action. Dark solid lines: numerical solution, red dashed lines:
analytical expression. In plots (c-d) the earthquake shock starts at t=7s, when the middle car of
the TALGO AV2 train (c=100km/h) leaves the bridge. Plot (d) is detail of plot (c) for t=5-10s.
Bridge parameters ( f;— first eigenfrequency, ¥ —damping, G — total weight ):

(a) =20m, f;=7.04Hz, 9=0.18, G=800kN; (b-d) #=30m, f;=4.51Hz, 9=0.18, G=800kN

Closed Form Solution

The closed form solution to the problem of the beam vibration (1-3) used in this work follows
the standard resolution into the quasi-static component comprising the variable boundary
conditions and the zero right hand side and the dynamic component which includes the
moving load. The time-dependent boundary conditions a(t), B(t) of the quasi-static part are
assumed to be represented by a sum of several selected (dominant) terms of a finite Fourier
approximation of the earthquake process, possibly modulated by a function of "slow time".
This quasi-static component is then solved using the Fourier method, whereas the dynamic
component is resolved using the eigenform expansion. The procedure is described in detail in
[Fryba et al. (2014)].

Numerical Solution

The numerical solution to the system (1-3) exploits the finite difference scheme of the 4™
order for discretization in the space variable and the 2™ order implicit Euler scheme for
interpolation in time. This approach is simple enough to allow to easily implement possible
alterations and, due to continuous nature of the problem, it offers a reasonable accuracy. The
target formula is derived in full in [Fischer et al. (2014)] and due to space limitation will not
be presented here.

The implicit Euler scheme is known to be unconditionally stable, however, it introduces an
artificial numerical dispersion (damping), see, e.g., [Hoffman (2001)]. The level of numerical
dispersion depends on value b = AV(EI/u)/h? , where A,h are (uniform) discretization
steps in time and space, respectively.

The discretization parameters 4, h should also be chosen in such a way as to allow the
consistent description of the moving load. The value of h should correspond to axle distances
of the supposed train and the time step 4 has to be dependent on the train velocity. Attention
should be paid to consistent distribution of the axle load F; between two adjacent space nodes.

Results

Although the numerically computed response generally corresponds well to the one obtained
using the explicit formula, for particular values of the parameters can the results differ



significantly. Figures 2(a-b) show sample response of two concrete bridges of lengths #=20m
and 30m due to an earthquake action. Whereas for the shorter bridge the analytical and
numerical responses do not differ, the analytical solution for the longer bridge (b) exhibits
spurious resonance oscillations which do not occur in the numerical solution. Plots (c-d) show
the vertical response of the mid-span point of the bridge #=30m due to the combined loading
of an earthquake and the train Talgo AV2. The artificial accelerogram based on 65 dominant
frequency components of the famous El Centro 1940 record is used for the both analytical and
numerical approaches for the left end of the beam a(t), the other end is supposed to be in rest
B(t) = 0. In the presented example the earthquake shock starts when the middle car of the
train leaves the bridge. At this moment is the response due to passing train maximal, as the
four middle axles forces of the Talgo AV2 train represent a pair of engines. Spurious
oscillations in the analytical solution are dominant even in this case of combined loading.

Conclusions

The high-speed trains substantially affect the dynamic behaviour of railway bridges, which
could be brought even to the resonant vibration. It is caused by a long sequence of axle forces
or their groups distributed in almost regular distances. Earthquake, as a broadband process,
can induce similar effect on the bridge. Combination of the earthquake shock and the high-
speed train load brings new demands on the properties of the structure. It comes to light that
the oversimplification of the complex problem can cause false predictions of the analytical
models. On the other hand, numerical dispersion is an inherent property of recursive
numerical procedures, which can cause the underestimation of the response. The both facts
attract attention of the research to development of new approaches, either based on stochastic
description of the earthquake process, or some kind of numerical stabilization of the
numerical integration procedure.
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