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ABSTRACT 

The paper deals with a simultaneous effect of a row of regularly distributed moving loads and a vertical seismic 
ground excitation on a single-span bridge. The simple mathematical model is used to allow direct comparison of 
analytical and numerical results. Advantages and drawbacks of both methods are discussed. Various levels of 
simplification of description the loads are supposed. The discussed methodology is illustrated on an example of 
an interaction of the real concrete bridge, the high-speed train TALGO AV2 and an artificial earthquake data.  
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Introduction 

The recent development and expansion of the high-speed railway services puts additional 
demands on the railway tracks, their design, construction and overall safety. This holds 
particularly true for bridges. The problem of the dynamic action of moving loads on structures 
as well as the specific effect of the high-speed rail traffic on bridges is reported regularly in 
the scientific literature and design codes, e.g. [Frýba (1996)] or [Frýba and Fischer (2003)], 
however, the combined effect of train and earthquake attracted attention only recently, see 
[Yau and Frýba (2005)]. In their first and also in the subsequent works authors [Yau and 
Frýba (2007)] or [Frýba and Yau (2009)] and finally [Frýba et al. (2014)] limit themselves on 
the case of the vertical vibration of a beam subjected to a row of moving forces. The supports 
of the beam are simultaneously supposed to provide vertical movements due to an earthquake. 
This model is unrealistic under certain circumstances, as the authors admit, from the point of 
view of both earthquake and bridge model. The effect of an earthquake is usually supposed to 
be dominant in the horizontal direction; only several harmonic components of the earthquake 
record are taken into account and the bridge is modelled as a simply supported Euler beam. 
However, simplicity of the model allows to formulate the analytic solution, which is able to 
provide a qualitative insight into the problem. Such an analytic solution can be favourably 
used for validation of a numerical procedure, which can be subsequently easily extended for a 
more general model. 
It has to be mentioned that the analytical formulae, which were derived for action of moving 
load on structures in, e.g., [Frýba (1996)] and which were extended for the combined problem 
in the above cited works by Frýba and Yau, bring their own difficulties for numerical 
enumeration: they involve partial sums of infinite trigonometric series, which can introduce 
spurious oscillations, or hidden pairs of terms, which cancel themselves under certain 



 

 

conditions and thus they are a potential source of numerical instability. Moreover, simplifying 
assumptions like lack of damping, rough model of an earthquake process or a limited number 
of eigenforms taken into account lower credibility of the formulae. Such obstacles introduce 
additional arguments supporting the numerical approach. 
There is a wide range of numerical techniques available to solve the fourth order parabolic 
partial differential equations (PDEs).  The traditional discretization methods comprise explicit 
and implicit finite difference schemas or several variants of finite element methods. Another 
popular option is the method of lines, which reformulates the PDE to the form convenient for 
application of a standard ordinary differential equation (ODE) solver. In this paper, the 
implicit difference schema is used, which was introduced for this particular problem in 
[Fischer et al. (2014)] 

Mathematical Model 

The dynamic action of the combined load on a simply supported beam is described by the 
fourth order PDE. The beam of span ℓ  is subjected to a row of moving forces Fn, 
n=1,2,3,…,N  at the distances dn, see the Figure 1. The forces are moving from the left to the 
right with a constant speed c. The supports of the beam perform the vertical movements (t) 
(left support) and (t) (right support), respectively. The equation together with initial and 
boundary conditions reads: 

    ,   , 2   , ∑ ɛ  (1) 

 0, , ℓ, ,  ʺ 0, 0, ʺ ℓ, 0  (2) 

 , 0 , 0 0 (3) 

where it has been denoted: 
,  – vertical displacement of the beam at  and time , respectively, 

 – flexural rigidity of the beam (constant), 
 – mass per unit length of the beam (constant), 
 – circular frequency of the beam damping, 
ɛ , where  is the Heaviside unit step function, 

 – Dirac function, 
/ , ℓ /  – time when the -th force enters or leaves the beam 

 – distance between the first and -th force 0, 
• ʹ, • – differentiation with respect to space or time, respectively. 

The boundary conditions (2) characterize the “simply supported beam” with prescribed 
movement of its both ends. The both soil displacement functions are usually assumed to be 
equal  or shifted  on both ends, however, the general choice 

 is supposed here. The initial condition (3) assumes that the structure is initially 
at rest. 

 
Figure 1: Theoretical model of a beam, moving forces  and support movements. 
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significantly. Figures 2(a-b) show sample response of two concrete bridges of lengths ℓ=20m 
and 30m due to an earthquake action. Whereas for the shorter bridge the analytical and 
numerical responses do not differ, the analytical solution for the longer bridge (b) exhibits 
spurious resonance oscillations which do not occur in the numerical solution. Plots (c-d) show 
the vertical response of the mid-span point of the bridge ℓ=30m due to the combined loading 
of an earthquake and the train Talgo AV2. The artificial accelerogram based on 65 dominant 
frequency components of the famous El Centro 1940 record is used for the both analytical and 
numerical approaches for the left end of the beam , the other end is supposed to be in rest 

0. In the presented example the earthquake shock starts when the middle car of the 
train leaves the bridge. At this moment is the response due to passing train maximal, as the 
four middle axles forces of the Talgo AV2 train represent a pair of engines. Spurious 
oscillations in the analytical solution are dominant even in this case of combined loading. 

Conclusions 

The high-speed trains substantially affect the dynamic behaviour of railway bridges, which 
could be brought even to the resonant vibration. It is caused by a long sequence of axle forces 
or their groups distributed in almost regular distances. Earthquake, as a broadband process, 
can induce similar effect on the bridge. Combination of the earthquake shock and the high-
speed train load brings new demands on the properties of the structure. It comes to light that 
the oversimplification of the complex problem can cause false predictions of the analytical 
models. On the other hand, numerical dispersion is an inherent property of recursive 
numerical procedures, which can cause the underestimation of the response. The both facts 
attract attention of the research to development of new approaches, either based on stochastic 
description of the earthquake process, or some kind of numerical stabilization of the 
numerical integration procedure. 
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