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ABSTRACT 

Over the past decades, with the development of modern manufacturing and information technology, demands of 
smart and economical structural designs have been increasing considerably. Central to this engineering issue is 
that a good structural design needs to embrace both necessary capabilities to afford critical load distributions and 
the best arrangement of materials serving the performance criteria using limited resources. Here, a new analysis 
technique is proposed to achieve optimal structural designs considering peak system responses as design 
constraints respective to extreme load distributions. We anticipate that the technique will open a door for 
designing efficient structural systems which satisfy safety requirements under various sophisticated loadings 
from the environment. 
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Introduction 

With current population on the earth, there is an inevitable pressure from consumption of 
natural resources. Therefore, we have to gain the financial and environmental benefits by 
designing smart and efficient structural systems serving their working loads. In this paper, we 
address both structural mechanics of extreme load distribution identification corresponding to 
certain peak system response and numerical nonlinear schemes of structural optimization, and 
then fuse these two techniques to achieve optimal designs considering peak structural 
behaviors as design constraints corresponding to extreme loads. 

Formulations 

We may consider the finite element method of structural mechanics [Cook et al. (2001)] for 
implementing structural optimization considering peak system responses as design 
requirements corresponding to extreme load distributions under the following two main 
subjects: structural mechanics of extreme load distribution identification to certain peak 
system response and nonlinear programming in structural optimization involving the peak 
system behaviors as design constraints. The detailed description of the structural mechanics 
dealing with identification of extreme loads and the nonlinear programming in structural 
optimization will be given as follows. 

Structural Mechanics of Extreme Load Distribution Identification to Certain Peak 
System Response 

In this paper, extreme loads are adopted as the load distributions which lead a particular 
extreme quasi-static response of the structure system, and this load pattern is regarded as the 



 

 

most expected loads which result in the special peak system behavior among all the events of 
Gaussian properties for certain loading duration [Kasperski (1992)]. The maximum structural 
response of the ith degree of freedom is written as 

  max  
i k ki ik k r p pk

r a p g     , (1) 

where a  is the flexibility matrix of the structure, p  is the mean dynamic loads, g  is the peak 
factor for a given structural reliability ( 3.5g   in the Eurocode 8 will be adopted in this 
paper.), ρ  is the correlation coefficient matrix between the structural responses r  of the 
system and the dynamic loads p , and σ  is the standard deviation of the dynamic loads. 
Therefore, the equivalent static loads for the maximum response of the ith degree of freedom 
for the loading duration is 
 max  

i k kk k r p pp p g    , (no sum on k). (2) 

Similarly, the minimum structural response of the ith degree of freedom is 

  min  
i k ki ik k r p pk

r a p g     , (3) 

and the equivalent static loads for the minimum response of the ith degree of freedom for the 
loading duration is 
 min  

i k kk k r p pp p g    , (no sum on k). (4) 

Nonlinear Programming in Structural Optimization involving Peak System Behaviors as 
Design Constraints 

In dealing with structural optimization, the mathematical problem is usually described as 
  minimize  , nf Rx x  (5) 

  subject to 0g x , (6) 

                 0h x , (7) 

where x  is the design variables,  f x  is the objective function,  g x  and  h x  denote the 
inequality and equality constraints respectively. For a truss structure, the objective function is 
set as the total weight of the structural system; the design variables are the cross-sectional 
areas of the members A ; the inequality constraints are specified by the limited maximum 
system response of the ith degree of freedom ir

 ; and the lower and upper bounds of the design 
cross-sectional areas of the truss members are denoted as lbA  and ubA  in this study. Hence, 
the optimization problem of the truss structure is further written as 
  minimize  =A , n

i if L RA A  (8) 
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  2 0ub  g A A A , (10) 

  3 0lb  g A A A . (11) 

For such kind of nonlinear optimization problems, the design variables are suggested to be 
solved by the sequential quadratic programming method [Byrd et al. (1999), Byrd et al. (2000) 
and Waltz et al. (2006)]. 

Practical Application 

Consider a truss structure with its supports shown in Fig. 1. The truss is made of the A-36 
steel, which has Young’s modulus of 200 GPa, and has a uniform cross-sectional area of 150 
mm2. The structure is subjected to external dynamic loads at all its nodes in both x1 and x2 
directions, and the means μ and standard deviations σ of these nodal loads are given in Table 
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