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ABSTRACT 

As a train passes through a rail bridge with overhanging beams at high speeds, the overhanging beam would be 
subjected to intensive vibrations and then excite the running trains over it, which may build up the dynamic 
response of the train-bridge system. In this study, a finite element modeling that can account for the dynamic 
interaction of train-bridge coupling system will be used to simulate the dynamic response of the coupling system. 
To reduce the amplification effect of overhanging beams on the train-bridge system, a set of rotational restraint 
devices will be installed on the adjacent overhanging beams. From the numerical results, the proposed approach 
can effectively reduce the amplification of overhanging beams on the train-bridge system. 
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Introduction 

Speedy delivery, high capacity, relieve congestion, energy efficiency, and less amount of land 
in operation are primary advantages of high speed rails (HSR) in modern intercity 
transportation. From the viewpoint of operational safety and riding comfort of a high speed 
train moving on a rail bridge, the bridge must be designed to provide sufficient structural 
strength for the traveling train. For this, the vehicle-bridge interaction (VBI) dynamics 
become one of important subjects for vibration problems of high speed railway. Focusing on 
the dynamic behavior of rail bridges due to moving loads, many engineering researchers and 
scientists have devoted themselves to studying the resonant response of a bridge subjected to 
a series of moving loads with regular intervals. With the VBI considerations in high speed 
rails, many interesting topics were investigated, such as wind effects, seismic analysis, and 
ground movements. In this study, the VBI dynamic problem for a train running on simply 
supported bridges considering the effects of overhanging beams at support ends (see Fig. 1) 
will be conducted. From numerical investigations, as a high speed train moves on a bridge with 
overhanging beams, the overhanging beams would be subjected to intensive vibrations. Such 
vibration would excite the running train over the overhanging beams and further build up the 
dynamic response of the train-bridge system. In this study, a finite element modeling that can 
account for the dynamic interaction of train-bridge coupling system will be used to simulate 
the dynamic response of the coupling system. By finite element method, a number of multi-
span simply supported bridges are modeled as a series of beam elements and a train as a 
sequence of identical moving two-axle systems. To reduce the amplification effect of 
overhanging beams on the train-bridge system, a set of rotational restraint devices will be 
installed on the adjacent overhanging beams. From the numerical results, the proposed 



 

 

approach can effectively reduce the amplification of overhanging beams on the train-bridge 
system. 

 
Figure 1  Overhanging beams at bridge supports 

Train-Bridge interaction finite element anaysis 

In analyzing the VBI problem, two sets of equations of motion are written, one for the 
supporting bridge and the other for each of the moving vehicles over the bridge. As the 
contact points between the running vehicles and the bridge move from time to time, the 
system matrices must be updated and factorized at each time step in an incremental time-
history analysis. Considering the complex procedure, the two sets of differential equations, in 
general, are solved by the following computational approaches (Yang et al. 2004): (1) full 
vehicle-bridge coupling system, (2) iterative scheme, and (3) dynamic condensation method.  

 

Fig. 2 Schematic diagram of train-bridge model 

As shown in Fig. 2, when a train passes a bridge, at a certain instant during the passage of the 
train, some elements of the bridge will be directly acted upon by the two-axle systems, while 
the others are not. In this study, the most commonly used 12-DOF beam element will be used 
to simulate the bridge structure, of which the axial displacement is interpolated by linear 
functions and the transverse displacements by cubic interpolation (Hermitian) functions. The 
number of vehicles directly acting on the bridge changes as the train keeps moving, and so do 
the contact points between each bridge element and the moving vehicles. Typically, a beam 
element will be acted upon by a wheel-set, as shown in Fig. 2. Such an element has been 
referred to as the planar vehicle-bridge interaction (VBI) element. For this element, two sets 
of equations of motion can be written, one for the bridge element and the other for the vehicle 
system: 
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where [mb], [cb], [kb] = the mass, damping, and stiffness matrices of the beam element, and 
{pb} and {fc} = the external nodal loads and the contact forces existing between the sprung 
mass and the beam element; [mv], [cv], [kv] = the mass, damping, stiffness matrices of the 
sprung mass, {pv} = the weight of the lumped part of the vehicle, and and < Nc > = the 
interpolation function vector. The preceding two equations (1a,b) are coupled through the 
contact forces {fc}, while the coefficients matrices of the planar vehicle system vary 
according to its acting position on the bridge. To overcome the time-varying nature of the 
problem, Yang et al. (2004) proposed a method for condensing the degrees-of-freedom (DOFs) 



 

 

of the two-axle system into those of the element in contact, after the two-axle systems are 
discretized in advance by Newmark's finite difference formulas. The result is a VBI element 
that possesses the same number of DOFs as the parent element, while the properties of 
symmetry and bandedness are preserved. Such an element is particularly suitable for 
analyzing the dynamic responses of the vehicle-bridge interaction problems concerning both 
the bridge and vehicle responses. Because the VBI element and its parent element are fully 
compatible, conventional element assembly process can be applied with no difficulty to form 
the equations of motion for the entire vehicle-bridge system, that is 
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where [M], [C], [K] respectively denote the mass, damping, and stiffness matrices of the 
entire vehicle-bridge system, {Ub} the bridge displacements, and {Pb} the external loads 
acting on the bridge. The preceding equations are typical second-order differential equations, 
which can be solved by a number of time-marching schemes. In this study, the Newmark β 
method with a constant average acceleration is employed again to render the preceding 
equations into a set of equivalent stiffness equations, from which the bridge displacements 
{Ub} can be solved for each time step. Once the bridge displacements {Ub} are made 
available, the bridge accelerations and velocities can be computed accordingly. By a 
backward procedure, the response of the sprung masses can be computed as well on the 
element level, which serves as indicator of the riding comfort (Fryba 1999). 

Finite Element modeling of the train-bridge system and numerical results 

Figure 3 shows the three train-bridge cases to be studied in this paper. Figure 3(a) represents a 
conventional simply supported bridge for typical structural analysis of railway bridges, Fig. 
3(b) the bridge with overhanging beams at both ends for practical considerations, and Fig. 3(c) 
the overhanging beams of adjacent bridge are connected by an equivalent rotational springs.  
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Figure 3  VBI model (a) Simple beams; (b) Simple beams with overhanging beams; (c) 
Simple beam with restraint overhanging beams. 

  
Let v denote the moving speed of the train and L the length of the bridge. The speed 
parameter S is defined as the ratio of the first excitation frequency of the moving vehicles, i.e., 
πv/L to the fundamental frequency    (= 2 f ) of the bridge (Yang et al. 2004) 
 

v
S

L





                                    (4) 



 

 

Since the resonant response may result in the ballast destabilization and diminishing of 
operational safety of trains on track structures, the maximum acceleration will be employed to 
evaluate the dynamic interaction of vehicle-bridge system for the beams with overhanging 
arms in the following numerical examples (Fryba 1999). According to the resonant speed 
given previously, that is, vres = fD, the corresponding resonant speed parameter is denoted as 
Sr and can be expressed as Sr = D/2L. The vertical acceleration of the moving vehicles has 
been regarded as an indicator of the riding comfort or running safety of high-speed trains. For 
this, the maximum vertical acceleration of the running two-axle systems is defined as: 
     ,max max
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Figure 4 presents the maximum acceleration for the beam with span L = 35m and the running 
train with car length D = 25m against the speed parameter S, which has been defined in Eq. 
(4), respectively. As indicated, both the responses of the bridge and running two-axle systems 
are significantly amplified due to the effects of overhanging beams, especially at the resonant 
speed parameter of Sr = 0.357 (= D/2L=25/(2*35) ). 
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Figure 4   Maximum response vs. S 

(a) Midpoint acceleration of the bridge vs. S plot (b) av,max vs. S plot 
 
From the numerical results, the following conclusions can be drawn: 
1. Significant resonant peak takes place on the dynamic response of the train-bridge system. 
2. Installing end rotational restraints on overhanging beams of the adjacent bridges can 

effectively reduce the amplification of dynamic response for the VBI system due to the 
overhanging beam effects. 

3. The amplification effects of overhanging beams on the VBI system of HSR should be 
taken into account in design.  
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