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ABSTRACT 

In this paper, an indirect bridge frequency monitoring method will be presented through theoretical formulation 
and experimental verification. The idea of indirect method is based on the coupling nature of a vehicle moving 
on a bridge proposed by Yang et al. (2004), in which the bridge response can be recorded by the passing vehicle. 
Thus, one can extract the bridge frequencies from the response of the moving instrumented vehicle. With this 
concept, this study adopted a simplified vehicle-bridge interaction model to present a semi-analytical solution of 
dynamic response for a vehicle traveling on a simply supported beam, from which the vibration data of bridge 
response was recorded in the instrumented vehicle. Then an experimental setup for measuring the bridge 
frequency was introduced for verification of the indirect method. From the present experimental results, the 
indirect bridge inspection method is applicable to monitor the dynamic characteristics of a bridge. 
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Introduction 

Conventional bridge inspection needs to install a lot of sensors on a bridge directly. This 
approach is called direct bridge monitoring method in this study. To simplify the bridge 
monitoring procedure in practice, Yang et al. [2004] proposed a vehicle-bridge interaction 
(VBI) model to extract beam frequencies from the response of a passing sprung mass unit 
based on a quasi-closed form solution of the VBI system. This approach is referred to indirect 
monitoring method. For a VBI system, the passing vehicle can be regarded as an active 
actuator to excite the bridge and also as a response receiver to capture the vibration data from 
the vibrating bridge. Then the vibration data recorded by the passing vehicle can be used to 
extract the bridge frequencies. In this study, a simplified vehicle-bridge interaction system is 
represented by a moving sprung mass unit over a simple beam so that one can derive a semi-
analytical solution of dynamic response for the sprung mass traveling on the beam, from 
which the vibration data of bridge response was recorded in the instrumented vehicle. Then an 
experimental setup for measuring the bridge frequency was introduced for verification of the 
indirect method. From the experimental verifications, the indirect method shows an excellent 
efficiency and mobility in assessment techniques appropriate for bridge health monitoring. 
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Substituting the beam deflection shown in Eq. (5) into Eq. (2) yields 
2
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The excitational force on the right-hand side of Eq. (7) consists of two parts: The first term 
with sin( / )n vt L  is the driving force, and the second term with sin( )bt  represents the free 
vibration of the beam. By solving the differential equation of Eq. (7) with zero initial 
conditions, one can obtain the displacement response of the sprung mass as 
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As shown in Eq. (8) and (9), the frequency content of the vehicle response is composed by 
three components: vehicle frequency ( v ), bridge frequency ( b ) and driving frequency 
( 2 /v L ). Obviously, the dynamic response of a passing vehicle over a bridge is easier to 
measure than to install a lot of sensors on a bridge for vibration measurement. Therefore, the 
indirect bridge monitoring method becomes very attractive for bridge engineers to perform 
bridge health monitoring. In the following section, a VBI experimental setup will be 
introduced and used to verify the feasibility of the indirect method. 
 

Experimental setup 

A simple laboratory model of the investigated problem was constructed. Simulation of the 
passing vehicle was carried out on a plexiglass beam with length 2m,  see figure 2. The 
response to the moving mass was measured during the passing over the beam and for the 
verification of dynamic parameters of the beam was also measured at several places. The 
experimental test set-up is shown in Figs. 3. The set-up allows change the speed of crossing 
and stiffness parameters of the vehicle. 
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